Strawberry Fields Forever
We don’t need AI to destroy the world.
We don’t need AI to destroy the world.
Make It New
Developments in Networks, Biology, Robotics, and More
What happens when AI is trained on its own output?
It’s about the will to learn
AI can help you learn—but it needs to do a better job
Developments in AI, Privacy, Quantum Computing, and More
It’s not writing code, it’s managing complexity
Developments in Hardware, Operations, Cryptocurrency, and More
Why did searches for ChatGPT decline sharply in June and July?
Developments in Programming, Web, Security, and More
The only thing to fear is failing to make the transition to AI-assisted programming
Developments in AI, Security, Quantum Computing, and More
Plugins can make ChatGPT more reliable, but you still have to be careful.
Developments in Data, Operations, Hardware, and More
To prevent long-term harms, build systems that address current issues of justice and fairness.
Developments in Programming, Security, Web, and More
Writing Prompts Isn’t As Simple As It Looks
ChatGPT isn’t the only important trend in technology.
Developments in AI, Security, Programming, and More
Opportunities, Costs, and Risks for Large Language Models
How do you know that ChatGPT isn’t lying?
Developments in Quantum Computing, Biology, Hardware, and More
What O'Reilly Learning Platform Usage Tells Us About Where the Industry Is Headed
What hath Microsoft and Google wrought?
Do AI hallucinations foreshadow artificial creativity?
Developments in Data, Programming, Security, and More
Developments in AI, Biology, Regulation, and More
Not much.
Developments in Security, Cryptocurrency, Web, and More
Perspectives from the Asia-Pacific Region
What does it mean to use data in a healthy way?
Do language models need to deliver reproducible results?
Developments in AI, Programming, Quantum Computing, and More
The enterprise metaverse is about better collaboration, not virtual meetings.
Hyperautomation may only be a buzzword, but automating business systems with AI is an important trend.
Developments in Machine Learning, Metaverse, Web3, and More
Why are we talking about AGI when we can’t define “intelligence” adequately?
Developments in AI, Privacy, Biology, and More
How might Copilot’s descendants change the craft of programming?
Developments in Security, Quantum Computing, Energy, and More
Models like DALL-E dissociate ideation from implementation. Do we care?
Developments in AI, Metaverse, Programming, and More
Trends for Compensation, Remote Work, Training, and More
We need to be talking about access
And is artificial general intelligence what we really need?
Developments in Programming, Metaverse, Hardware, and More
Developments in Web3, Security, Biology, and More
Are we swinging away from general-purpose CPUs?
Developments in Programming, Biology, Hardware, and More
If a cause rarely causes something, is it a cause?
Developments in AI, Blockchain, Education, and More
What does it mean to say a computer model “understands”?
Web3 needs to solve the problems of Web0
Developments in Web, Metaverse, Infrastructure, and More
What O'Reilly Learning Platform Usage Tells Us About Where the Industry Is Headed
An Introduction for Data Scientists
Here are some predictions for tech in 2022.
Developments in AI, IoT, Programming, and More
Developments in Programming, Quantum Computing, Cryptocurrency, and More
Developments in AI, Security, Quantum Computing, and More
When Copilot writes your code, will you care whether it’s good or bad?
Developments in Security, Law, Quantum Computing, and More
Trends in AI, robotics, social media, and more
Authentication, Backups, Updates, and Least Privilege
Trends in Programming, Robotics, Security, and More
The code that holds our systems together
Trends in AI, Ethics, Security, and More
The Next Critical Talent Shortage Won’t Be Fortran
Trends in AI, Security, Programming, and More
What happens when deepfakes become cheap?
Trends in AI, Security, Finance, and More
Conspicuous consumption for the online world
Trends in AI, Social Media, Augmented Reality, and More
Is a new generation of AI systems arising from cross-fertilization between different AI disciplines?
Trends in AI, Ecology, Finance, and More
What questions should we be asking about the future of social media? “Free Speech” isn’t it.
Trends in AI, Programming, Quantum Computing, and More
Following O'Reilly online learning trends to see what's coming next.
Patterns give you a language for discussing solutions to problems.
Trends in AI, Security, Biology, and More
Be as functional as you want to be
Trends in AI, Robotics, Infrastructure, and more.
We need to learn how to effectively use multi-paradigm languages that support functional, object oriented, and procedural paradigms.
Trends in AI, Programming, Security, and more.
The AI product manager’s job isn’t over when the product is released. PMs need to remain engaged after deployment.
Creativity means making something new, not copying what exists already.
Trends in AI, COVID-19, Programming, and more.
A look into the Covid-19 pandemic's influence on how we think, spend, and manage our businesses.
What are some of the least liked/most dreaded programming languages? Why are they dreaded, and are they being evaluated fairly?
Trends in COVID-19, AI, data, robotics, programming, VR, technology and society, and security.
Previous articles have gone through the basics of AI product management. Here we get to the meat: how do you bring a product to market?
Data is often biased. But that isn’t the real issue. Why is it biased? How do we build teams that are sensitive to that bias?
Everyone’s talking about microservices. Who’s actually doing it?
How automation is likely to change professional software development.
Trends in disruptions in COVID-19 and #BlackLivesMatter, AI, programming, social media, and cloud.
Trends in COVID-19, programming, machine learning & AI, payment systems, and networks.
How do you build a business around open source when you’re competing with AWS and the like? Chef’s answer: double down on Open Source.
Trends in technology and Coronavirus, robotics, AI, programming, and the New Workplace.
Every time the cry for COBOL programmers has gone up, we’ve muddled through; this time, we should do something better.
Companies that succeed will protect, fight for, and empower their users
Coronavirus, real time transcription, quantum computing, and regulating cryptography.
A product manager for AI does everything a traditional PM does, and much more.
Disposable bluetooth stickers, Coronavirus impact, smart farming, and cybersecurity.
In this edition of the Radar column, we examine the big picture around Agile, and look at what it means and what it doesn't.
News from CES, developments in automation, cloud computing, and trends from China.
In this edition of the Radar column, we explore questions and challenges facing ops teams as they attempt to assimilate AI.
We note three big things that will shape technology in 2020, and we’re tracking notable developments in open standards and security.
In this edition of the Radar column, we look at how the tools and techniques of programming are poised to evolve.
It’s clear that AI can and will have a big influence on how we develop software.
We’re tracking notable developments in privacy, security, health, and more.
In this edition of the Radar column, we explore the limitations and possibilities of high-speed 5G connectivity.
We need to remember that creating fakes is an application, not a tool—and that malicious applications are not the whole story.
We’re tracking notable developments in 5G, devices, augmented reality, blockchain, and more.
In this edition of the Radar column, we explore Google’s quantum supremacy milestone.
The struggle is not about free speech; it's about the right to pay attention and to think.
We’re tracking notable developments in open source activism, quantum computing, AR/VR, and more.
In this edition of the Radar column, we look at what’s possible when ML apps can work with minimal or inconsistent power supplies.
We’re tracking notable developments in the democratization of AI, open source supply chain attacks, brain-computer interfaces, and more.
An overview of applications of new tools for overcoming silos, and for creating and sharing high-quality data.
As organizations embrace machine learning, the need for new deployment tools and strategies grows.
Adversarial images aren’t a problem—they’re an opportunity to explore new ways of interacting with AI.
We shouldn't ask our AI tools to be fair; instead, we should ask them to be less unfair and be willing to iterate until we see improvement.
We won’t get the chance to worry about artificial general intelligence if we don’t deal with the problems we have in the present.
From data quality to personalization, to customer acquisition and retention, and beyond, AI and ML will shape the customer experience of the future.
Programmers have built great tools for others. It’s time they built some for themselves.
More than anything else, O'Reilly's AI Conference was about making the leap to AI 2.0.
Machines will need to make ethical decisions, and we will be responsible for those decisions.
Balancing risk and reward is a necessary tension we'll need to understand as we continue our journey into the age of data.
The toughest bias problems are often the ones you only think you’ve solved.
The internet itself is a changing context—we’re right to worry about data flows, but we also have to worry about the context changing even when data doesn’t flow.
Mapping the complex forces that are reshaping organizations and changing the employee/employer relationship.
Radar spots and explores emerging technology themes so organizations can succeed amid constant change.
Much like human speech, bird song learning is social; perhaps we'll discover machine learning is social, too.
Consent is the first step toward the ethical use of data, but it's not the last.
Our bad AI could be the best tool we have for understanding how to be better people.
If we’re going to think about the ethics of data and how it’s used, then we have to take into account how data flows.
HTTPS "everywhere" means everywhere—not just the login page, or the page where you accept donations. Everything.
General intelligence or creativity can only be properly imagined if we peel away the layers of abstractions.
We can build a future we want to live in, or we can build a nightmare. The choice is up to us.
Five framing guidelines to help you think about building data products.
Oaths have their value, but checklists will help put principles into practice.
“Human in the loop” software development will be a big part of the future.
Data scientists, data engineers, AI and ML developers, and other data professionals need to live ethical values, not just talk about them.
It’s easy to imagine an AI winning a game of Go, but can you imagine an AI wanting to play a game of Go?
We need to build organizations that are self-critical and avoid corporate self-deception.
When we finally find the best use cases for blockchains, they may look like nothing we would have expected.
Successful projects will think seriously about what blockchains mean, and how to use them effectively.
Don’t pigeonhole blockchain as a technology that’s primarily useful for finance.
Unpacking the complexity of blockchain, term by term.
Demanding and building a social network that serves us and enables free speech, rather than serving a business metric that amplifies noise, is the way to end the farce.
Our survey reveals how organizations are using tools, techniques, and training to apply AI through deep learning.
The web was never supposed to be a few walled gardens of concentrated content owned by a few major publishers; it was supposed to be a cacophony of different sites and voices.
In the software world, we’re often ignorant of the harms we do because we don’t understand what we’re working with.
Publishers need to take responsibility for code they run on my systems.
We need a new model for how AI systems and humans interact.
It’s time to think about how the systems we build interact with our world and build systems that make our world a better place.
Use cases and tips to help businesses take full advantage of AI technology.
The ability to appeal may be the most important part of a fair system, and it's one that isn't often discussed in data circles.
Since AI's most amazing advances have been in playing games, it seems fitting that the creative challenge should involve creating games.
Thoughts on "We are the people they warned you about."
Scale changes the problems of privacy, security, and honesty in fundamental ways.
What you need know before committing to AI.
Understanding the impact and expanding influence of DevOps culture, and how to apply DevOps principles to make your digital operations more performant and productive.
It's time to stop cursing the network we have and build the network we want.
An AI-first strategy will only work if it puts the user first.
To succeed in digital transformation, businesses need to adopt tools that enable collaboration, sharing, and rapid deployment. Jupyter fits that bill.
A new role focused on creating data products and making data science work in production.
Nothing says machine learning can't outperform humans, but it's important to realize perfect machine learning doesn't, and won't, exist.
The tools of defensive computing, whether they involve mascara and face paint or random autonomous web browsing, belong to the harsh reality we've built.
Is it possible to imagine an AI that can compute ethics?
If behavioral authentication could be made to work, it could be a big part of our future.
It makes no sense at all for programming to be stuck on laptops, but that's where we are.
Machines learn what we teach them. If you don't want AI agents to shoot, don't give them guns.
We need AI researchers who are actively trying to defeat AI systems and exposing their inadequacies.
A framework for thinking about AI.
Is it possible for an AI to create revolutionary art?
If you look carefully at how humans learn, you see surprisingly little unsupervised learning.
Mike Loukides and Ben Lorica examine factors that have made AI a hot topic in recent years, today's successful AI systems, and where AI may be headed.
A lot can happen in biotechnology with plain old organisms.
Open source has victories, but there are battles that still need to be fought.
Whether our prejudices are overt or hidden, our artificial intelligentsia will reflect them.
Why companies are turning to specialized machine learning tools like MLflow.
The software industry has demonstrated, all too clearly, what happens when you don’t pay attention to security.
We need to do more than automate model building with autoML; we need to automate tasks at every stage of the data pipeline.
These studies provide a foundation for discussing ethical issues so we can better integrate data ethics in real life.
We’re currently laying the foundation for future generations of AI applications, but we aren’t there yet.
The AI Conference in NY will feature tutorials, conference sessions, and executive briefings to help business leaders understand and plan for AI technologies.
It's time to rally in defense of the internet again.
Greg Brown's new book, Programming Beyond Practices, is a thoughtful exploration of how software gets developed.
Shared learning: It's what we do at O'Reilly, and it's what we’d like to share with you.
Building the next generation of leaders, for any size organization.
At Cultivate, we'll address the issues really facing management: how to deal with human problems.
Moving biology out of the lab will enable new startups, new business models, and entirely new economies.
Cultivate is O'Reilly's conference committed to training the people who will lead successful teams, now and in the future.
BioCoder 6: iGEM's first Giant Jamboree, an update from the #ScienceHack Hack-a-thon, the Open qPCR project, and more.